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LoO-Boundedness of L2-Projections on Splines 
for a Multiple Geometric Mesh* 

By Rong-Qing Jia** 

Abstract. This paper concerns the L2-projectors from Loo to the normed linear space of 
polynomial splines. It is shown that for the multiple geometric meshes the Loo norms of the 
corresponding L2-projectors are bounded independently of the mesh ratio. 

0. Introduction. Let us begin with some notation. Let k be a positive integer, and 
x = (x,) i z a real nondecreasing knot sequence with xi < XI?k, all i. Set 

x-00 : lim xi,I x:o := lim xji, I:= (x OO,x00). i-0 i o00o 
For- i E Z and x E I, define 

Mi k(X):= k[xi,..xi+k]( - X)+i, Ni,k(X):= (Xi+k - Xi)Mi,k(x)/k, 

where [po, . ., Pr]f denotes the rth divided difference of the function f at the points 

Po 0, Pr Then Ni k is called the i th B-spline of order k on the knot sequence x. 
For a E RZ, the rule 

f (x):= a(i)NiAk(x) 

defines a function on I if we take the sum to be pointwise. Every such function is 
called a polynomial spline of order k with the knot sequence x, and their collection 
is denoted by Skx* Further, let ? denote the normed linear space of bounded 
polynomial splines of order k with the knot sequence x and norm 

fll II:= sup I f(x) IX 
xEI 

We shall be concerned with P., the orthogonal projector onto ? with respect to the 
ordinary inner product 

(f, g) = ff(x)g(x) dx, 

but restricted to L,,(I). We want to bound its norm 

11 P? II:= sup IIPsf II/1 III.o 
fEL,,(J) 
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In 1973, de Boor [1] made the conjecture that 

SUp IIP? 11 < COnst, < 00. 
x 

This conjecture has been verified only for k = 2 (Ciesielski [8]), k = 3 and 4 (de 
Boor [5]). Moreover, de Boor [4] showed that P. is bounded in terms of the global 
mesh ratio. For geometric meshes, Hollig [12] proved that P. is bounded indepen- 
dently of the mesh ratio. Later on, Feng and Kozak [9] reproved this result. For a 
tri-multiple geometric mesh, Mityagin [15] established the uniform boundedness of 

P. for k = 6. 
In this paper we shall be concerned with multiple geometric knot sequences 

(xi) i Ez; that is, 

X/i = x1i+1 = xi+1_l = qi, all i, 0 < q < oc, 

where / E N is the multiplicity of the knots. Our main result is 

sup IIP?s constk < CC 
x 

where x runs through all the multiple geometric knot sequences. This result extends 
the results of Hollig and Mityagin. 

Let A = Aq be the Z x Z matrix given by 

A (i, j):= JMi kNj,k for i, j E Z. 

It is shown by de Boor ([1], also [2]), that 

Dk -2| A-11ll1o < 11Ps ll < 11A-1 11o 

where Dk is a constant depending only on k. Thus, bounding P, is equivalent to 
bounding A-'. 

Now since the mesh (xi)1 E z is an i-multiple geometric one, we have 

A(i + 1, j + 1) = f Mi+?(x)Nj+,(x) dx 

= f Mi+1(x)Nj(q-x) dx = f qMi+,(qx)Nj(x) dx 

= f M,(x)Nj(x) dx = A(i, j). 

This shows that A is an /-block Toeplitz matrix. Moreover, A is totally positive (see 
[13, Chapter 10], also [2]). This motivates us to investigate totally positive block 
Toeplitz matrices. 

1. Totally Positive Block Toeplitz Matrices. Let A be a bi-infinite N-block 
Toeplitz matrix. Then there exists a sequence of N x N matrices Ai (j E Z) such 
that A has the following form: 

A A. . . . 0E A 1 A2 

A= *-- A -1 Ao Al 
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Now 
00 

A(z):= A zn z E C, 
n = -oo 

is a formal powef series with matrix coefficients. It is called the symbol of A. If all 
the rows of A are in 11, i.e., 

00 

(1.1) E aijaI < oo forall i E Z, 
j= -00 

then A(z) makes sense for lzl < 1. In this case, A determines a bounded linear 
operator from loo to lo. This operator is also denoted by A. A basic question is when 
A is boundedly invertible. In the case where A is also totally positive, the following 
theorem gives an answer. In its statement and further on, we use the abbreviation 

1':= ((-1)}j )jeJ 

for the vector on the index set J whose entries are alternately 1 and -1. Typically, 
J = (1, ..., N) or else J = Z. We also use 

Co:= (_1) 

THEOREM 1.1. Let A be a bi-infinite totally positive N-block Toeplitz matrix with all 
the rows in 11. Then A is boundedly invertible if and only if 

detA(c) # Q. 

Moreover, det A(Xco) 0 0 if and only if there exists b E RN such that 

(1.2) A(c)b= 1', 
and, for such b, IIA'II = Ilb IK 

Remark. When A is a banded matrix, the first part of this theorem is already 
obtained in [7]. The above theorem removes the restriction of bandedness. 

To prove Theorem 1.1, we need a lemma. 

LEMMA 1.1. Let 9P be a real number. If cp/(2,g) is not an integer, then for any 
positive integer n0 there exist integers k, I such that 1 > k > n0 and 

(1.3) Icos kl i>2, c 5 o sk 1I > and cos kg cos 1k < 0. 

Furthermore, if 9p/r is not an integer, then k and 1 can be chosen to be even numbers. 

Proof. Suppose first that (p/2 r is not an integer. Without loss of generality we 
may assume 0 < (p < 2 f. We shall argue case by case. 

1 . 0 < p < 2q"/3. By [x] we denote the integer part of x, i.e., the largest integer 
< x. Let 

k:= [(2no7 + v/3)/(p], 1:= [((2nO + 1)7 + 7T/3)/99] 

Then 

kcp < 2no0 + S/3 < (k + 1)>p, 

kcp > 2n g + T/3 -(p 9> 2n g - /3; 

hence, 

kcp E [2nOT - g/3, 2nOT + g/3]. 
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Similarly, 

1k e [(2no + 1), - g/3, (2no + 1)> + ? /3] 

Thus (1.3) is fullfilled. 
2 . 47/3 < (p < 2g. In this case we set 

k:= [2nOgl/(2T - p)] and l:= [(2no + 1)>/(2T - T9)]. 

30. 27T/3 < 9p < sT. Since 4eg/3 < 2qp < 27T, this case reduces to 20. 
4 . (p = eg. This case is trivial. 
5 . eg < T < 4eg/3. Since 2eg < 29p < 8eg/3, this case reduces to 1 . 
Assume now that 9p/7T is not an integer. Then 2Tp/2 T is not an integer and we 

obtain (1.3) with qp replaced by 2wp; hence we obtain (1.3) itself with both k and / 
even. This ends the proof of Lemma 1.1. 0 

Proof of Theorem 1.1. It is known (see [11]) that A is boundedly invertible if and 
only if det A (e i) 0 0 for all real 0. Thus, to prove the theorem, it is sufficient to 
show that the solvability of (1.2) for b implies that det A (e') = 0 for all 0. We prove 
this implication by contradiction. Suppose that det A(e'6) = 0 for some real 0. Then 
there exists a nonzero y e CN such that A(e'6)y = 0. Without loss of generality we 
may assume Y1 # 0, and, after multiplying by a suitable complex number, we may 
assume further that Yi is a positive real number. Let 

(1.4) YkN?j 
:= (eiO) kyj, k e Z; j =152 ... . N, 

Y:= ( .. 5Y-1, Y05Y15 Y25 .. 

Then Ay = 0. Suppose that b is a solution of (1.2). Let 

bkN?I:= wkb1, keZ; 
j=1,52,..., 

N, 

b:= (...,b15b0, b1, b2 ...) 

Then Ab = 1'. 
We consider the two possibilities: e'6 # w or e'o = w separately. First we consider 

the case eo # c. Fix E > 0 such that y1/2 > elbll and let u:= Rey + eb. Then 
u E loo and Au = el'. By (1.1) there exists a positive integer m such that 

(1.5) E I ajkI IIUIIOC < - 

|k-jl> m 

In the following we shall argue separately in terms of N even or odd. 
(i) N is even. In this case, e'6 # X = 1; hence 0/277 is not an integer. By Lemma 

1.1, there exist positive integers k,, 1i (i = O, . . ., 2m) such that 

(1.6) ko < lo < ki < 11 < ..< k2m < 12m, 

(1.7) |cos k, 0 > 2 I cos 1 0|> 2, and cos k 0 cos li 0 < O. 

Since Eilblj < yi/2, we have 

Uk,N+IUI,N+l = (y,coskj6 + ebj)(yjcosl10 + ebl) < 0. 

But (l,N + 1) - (kiN + 1) is an even number; therefore 

(1.8) Suk,N+1,.. , UI,N+1) < (liN - kiN) - 1, i = O,1, ... 2m, 
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where by S- we denote the number of strong sign changes in a sequence (see [13, 
Chapter 5]). Now set 

V:= ( U-m+k0N+1 ..., Um+12mN+?1) 

B (a,J) k0N+ 1 6<"< 2mN+ 1?-m+koN+ 1i< m+12?,N+ 1. 

Then B is a totally positive ((12m - ko)N + 1) X ((12m- ko)N + 2m + l)-matrix. 
The fact that Au = el', together with (1.5), implies that 

S-(Bv) = (12m - ko)N. 

On the other hand, (1.8) gives 

S-(v) s< (12m- ko)N -(2m + 1) + 2m = (12m- ko)N - 1. 

Since B is totally positive, it is variation-diminishing, namely 

S-(Bv) < S-(v) 

(see [13, Theorem 5.1.4]). This is a contradiction. 
(ii) N is odd. In this case, eio 0 c = -1. If e'@ # 1 also, then O/l" is not an 

integer. By Lemma 1.1 there exist even positive integers k,, 1 (i = 0, . . ., 2m) such 
that (1.6) and (1.7) hold. Thus the argument for case (i) is also valid for this case. 

Now, assume eio = 1. Let 

ki= i, li=(i?i), i=O,1,...,2m. 

Then (liN + 1) - (kiN + 1) is an odd number, but coskiOcosliO > 0; hence (1.8) is 
still true. Following the argument for case (i), we obtain the desired result. 

It remains to treat the case e'6 = o. In this case, (1.4) becomes 

YkN+j = CkYO 

Thus we may assume that y is a real sequence. For any X E R, c := b + Xy is a real 
sequence and satisfies Ac = 1'. Thus we have 

CjCj+ <0 for all j. 

(This can be proved, as done before, by truncating A to a finite matrix, invoking the 
variation-diminishing property for it and using the periodicity of c.) But that is 
impossible unless y = 0. 

Finally, since Ab = 1', we have IJAA- = IJbJlJ (see [6]). Therefore 

I A-1 11 = l11 il . 
The proof of Theorem 1.1 is complete. 

2. Exponential Splines. 
Definition 2.1. S E $2k is called an exponential spline, if for some constant X E R, 

S(qx) = XS(x) for allx E I. 

"The exponential splines", said Schoenberg in his elegant monograph [17], "will 
be used as thoroughly as the American Indians utilized the buffalo, to the last bone." 
The exponential splines also play an important role in this paper. By the above 
definition, every exponential spline is uniquely determined by its polynomial compo- 
nent in [1, q]. For reasons that will become clear later, we are particularly interested 
in the exponential splines 

cp1,4i1 (j=0,1,...,1-1) 
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given by 

,) x: (_l) k-j+lqk [o .l . k - 1 5 k + 15, . .. 2k - j ],qz q zqk 

for x e [1,q] and j=1,...,-1, 

vJj(X) := (_k-j) lq k[051,. . .2k -j - 1] z xz 
1]qz + qk 

for x E [1,q] and j=0,..., l-1 

(cf. [14]). Extend the domain of qpj and Jj to (0, cc) by the following rule: 

q(qmX) = qmk pi(x), 
m E Z, x E [1, q], 

4,(qmx) = (-qk) A (x) m E Z, x E [1, q]. 

We have to verify that Tj and Jj are in $2k. Obviously, q,j and Jj are polynomials 
on each interval [qm, qm + 1 . Thus it suffices to show that 

(2.1) qPpP)(q) - qk(p)(1), p = 0, 1,...2k - 2, 

(2.2) qP02P)(q) =q _k+(p)(1) 5 p =0, 1, .. ., 2k - 2. 

Indeed, for j = 0, (2.1) is trivial. For 1 < j < / - 1, we have 

qP(pcjP)(q) = qP (_)k-j+lqk[01...,k - 1,k + 1,...,2k -j]z 

z(z -1) ***(z -p + I)qz-p 
qz - qk 

= (_I)k, J+q k[051 5... 5k-1,5k+ 1, ..2k -j]z 

z(Z( - 1) ..(Z - P + 1)(1 + qk IL) 

- qkcp(P)(1). ~~qz- q 
=q j[(p (1 ) 

One can prove (2.2) in the same fashion. 
We want to investigate some properties of these exponential splines. In this 

section, we mean by i the imaginary unit: i = -1. Also we make the abbreviation 
t:= log q. We notice that the case q < 1 is symmetric to the case q > 1, so we need 
to treat the case q > 1 only. We assume also that k > / + 1. 

In the following, we use the abbreviations 
k-m k-j 

hmj(z):= H 1/(v + iz) H 1/(v - iZ) Zr := r?T/t. 
v=1 Y=1 

THEOREM 2.1. (i) Forx e [1, q], m = 0, 1, ..., - 1, andj = 1 ..., l- 1, 

(M)(= 1e(k-m+2nvi/t)logxh 

neZ 

(ii) Forxe[1,q]andm,j= 0,1,...,1-1, 

X,( m ) ( X ) = E I e(k-m+(2n+ 1)tZ2fl1o9xhMj ( ) 
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Proof. Suppose that S2 is a simply connected domain in the complex plane, and 
that C is a rectifiable Jordan closed curve in Q. If f is analytic in the domain S2, and 
if x is inside the curve C, then Cauchy's formula holds: 

(2.3) [x]f= 2I f z) dz. 

More generally, we have the following well-known formula for divided differences 
(see [10, Chapter 1]): 

(2.4) r i 1 f~ ~~~ f (z) d (2 .4) [X 09 Xl1 .. * Xn ]f = 2 T t -x z-x ) 

as long as x09 .. ., xn are all inside C. This result may be generalized to an arbitrary 
domain (not necessarily simply connected). Let S2 be a domain, C a cycle in S1 (see 
[16, Chapter 101). Thus C is a sum of closed paths, 

C=Y1+ --- 
+Yn. 

Each path is understood to be a continuous map from the unit circle to Ul. The image 
of a path y is denoted by y*. Correspondingly, 

C* := Y1* + **+Y*- 

For any x 0 C *, the index of x with respect to C is defined by 

Indc(x):= 2Ti z-x 

Suppose that Indc(r) = 0 for any ; not in Ul. If f is analytic in 2, and if 
Indc(x) = 1, then Cauchy's formula (2.3) is still valid. More generally, if 

Indc(x1) = 1, j=0,. ..., n, 

then (2.4) is still true. 
Now we want to use (2.4) to prove Theorem 2.1. Fix x e [1, q]. Consider the 

function f defined by 

f(z):= xz/(qz - qk') = ezlogx/(ezt - ekt) 

Then f is an analytic function of z in C \ { k + 2n7Ti/t; n E Z). Let yn be the path 
defined by 

Yn: eiG0 +k+2n7Ti/t+eeG/t, 0 < 6< 2 (n E Z), 

and SN the path given by 

3N: e6- k +((2N + 1) iT/t)eiG, 0 < 0 < 27T. 

Let 
N 

CN:= SN E 
n= -N 

Then by what has been proved, we have 

(2.5) [0,1, . ,k-l,k ?1, ik.1...,2k-j]f=2. fg(z)dz, 

where 

g(z) = f(z) 1 
Os6v<2k-I Z - V 
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We claim 

(2.6) lim f g(z) dz = O. 
N-oo N 

First, we observe that 

8 O4vnk _j Z V (N -2k) Nr 

Next, f is bounded on 8N. This will be proved case by case. Let 

z = k + e'G(2N + I)>n/t. 
Then 

(z - k)t = e'0(2N + 1)7T = (2N + 1)T(cosO + isin0). 

Case 1. cos 0 > 1/(4N + 2). In this case, since 

Ie(z -k)t= e(2N+l)icosO > 2 

one has 

e (z-k)t _ > e(2N+?l)-cosO/2. 

It follows that 

I f (z) I< e k1ogx+(2N+l i7cosO(Iogxlt) (ekt+(2N+1)7rcosO/2) < 2, 

noting that log x/t < 1. 
Case 2. cos 0 < -1/(4N + 2). In this case, 

e(z-k)t- > 1 - 

and 
ezlogxlA ekt 

Case 3. Icos 01 < 1/(4N + 2). In this case, 

Isin I> 1 -IcosOj> 1- 1/(4N+ 2), 
hence 

Im((z - k)t) E [2N7n + 7T/2,2NT? + iT] or [-2NT- 7T,-2N7T -r/2]. 

It follows that 

Ie(z-k)t _ II> 1. 

Moreover, 

I ez1log I e (k+7/2st 

This finishes the proof of (2.6). 
Now let N -x o in (2.5), and take account of (2.6). We obtain 

1 00 

[O,lI,. .., k - l, k + 1,...2k -ij] f= -2 i |gz)z 
n=oo I 

Each integral Jy. g(z) dz can be computed by residue calculus. The function g has 
only one pole z = k + 2nvi/t inside Yn. The residue of g at this point is 

1 e(k+2ngri/t)logx 
k 1 

q kt O<v<2k-j k + 2n7Ti/t - v 
v?k 
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Finally, we obtain 

pj1(x) = (_I jq k[0, I . k - 1, k + 1, ) ..,?2k-j] z qk 

k-k k - k-1 

= 1e ( k?+2 n kl /t)2on7x 17tlogx 
nEZ t v=1 V + 2n?Tri/t 1 v - 2n7ri/t 

Now (i) comes from this formula by differentiating m times. The proof of (ii) is 
similar. O 

As a consequence of Theorem 2.1, the following relations hold: 

'm)(1) = t 2n) 
neZ 

p(M) =E hm,Ji (Z2n+1)- 
neZ 't2n?l 

J+ n+) 

It follows from these two formulae that 

lim q)m)(1) = 2Jf hmjz(z)dz, 
(2.7) 

0 

q-~~~~ 00 -~~~00 
qi - 

m (1) = 2g pr v 0 | hMj+ I ( z )/(iz) dz. 

(Here, pr.v. means the Cauchy principal value.) Indeed, since (1/2?T)J2oIhm j(z)I dz 
< x, by the very definition of integration we get 

+fT | h Mj(z)dz = lim -,r , hm,j(Z2n)(Z2n-Z2n-2) 
2g- 0 t- o0 2, 

nc-Z 

= lim E hm,j(Z2n)/t = lim p(m)(1). 
t-c00ne q cc 

The proof of the second relation in (2.7) is similar. 
Now set 

D(q):= (T(m)(I))'ml and I(q):= (4,5m)(1))I =. 

THEOREM 2.2. The matrices 4D(q) and I(q) are invertible for 1 < q < ox. More- 
over, 

1D(oo):= lim D(q), I(oo):= lim I(q) 
q -o0 q -00 

both exist and are invertible. 

Proof. We observe that 

TO(ml)(l/<[)m)(- 
k -m, hm+ij(z)/hm z(Z) = k - m + zi/t. 

Thus we subtract (k - m) times row m from row m + 1 in D(q) (m = / - 2,.. ., 0). 
We obtain 

1 Ti *-- Ti-i 

o p4-kwp ... 
det (D -i .p . 

o w)' 1_(k k-I + 2)qA'- 2) ... Ip(l-1) -(k - I + 2)g('2) 
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all functions evaluated at 1. We have 

(m+1)(1) -(k - m) pm)(I) = E [hm+l,j(Z2n) 
- 

hm,J(Z2n)]/t 
neZ 

= E lZ2nhm,j(Z2n)/t. 
neZ 

We notice that 1 is a real matrix. If 1 is singular, then there exist real numbers 
... , /.-,, not all zero, such that 

I-l 

, j E lZ2nhm j(Z2n)/t = 0, m = 1,..., -1; 
j=1 neZ 

or 
[-l k-i k 

(2.8) iz2nho,(Z2n) I /j H (V - iZ2n) (V + iZ2n) = 0. 
nEZ j=1 v=k-j+l ?=k-m+2 

Let 
1-1 k-i 

p(u):= >.3P HI (V+ U), 
(2.9) 

j=1 
v=k-j+? 

k 

gm(u):= Hl (v + u), m=1,...,1-1. 
v=k-m+2 

Then p and gm are all real polynomials, and (2.8) becomes 

(2.10) E iZ2nh 1( Z2n )p(-Z2n)gm(Z2n) = 0. 
neZ 

We denote by Pn the linear space of all polynomials of degree less than n. Since gm 
has the leading term urmn (m= 1,...,1), {g1,..., g,1} forms a basis for P,_1. 
Since p E P,I 1, we can find real numbers a1, ... , al1I such that 

l-l 

(2.11) p = amgm 
m=l 

It follows from (2.10) that 
l-l 

am E 'Z2nh0,1(Z2n)P(-'Z2n)gm('Z2n) 
= 0, 

m=l neZ 

or, by interchanging the order of summation, 
l-l 

(2.12) iz2nh 0(Z2n )p(-iZ2n) E amgm (iZ2n ) = 0. 
neZ m=l 

Now (2.11) tells us that 
I-1 

P(-iz2n) E ammg(iZ2n) = P(-iZ2n)P(iZ2n) =P (iz2n) 
m=l 

Moreover, 

iZ2nhO l(Z2n) = iZ2n(k -Z2n)hO,O(Z2n) 

and 

Re(iz2n(k - iz2n)) =1z2n 12 
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while 
k 

h 17 1/(v2 + Z2~ >0 hOO(Z2n) = rll(2+Z2n) > ?- 
V=1 

Thus (2.12) yields 

E IP(iZ2n) 21z2n12 hOO(Z2n) = 0, 
neZ 

and, therefore, 

p(iz2n) = 0 for all n E Z. 

Since p is a polynomial, this implies that p = 0. Recalling (2.9), we conclude that 

pj = O for all j = 1, ... .,1 I-1. 

This shows that D is invertible. We can prove in the same fashion, and even more 
easily, that I is also invertible. 

As to ?D(oo) and I(oo), the series appearing in the definition of gj and fj are 
replaced by integrals, but the above proof is readily translated to this case. The proof 
of Theorem 2.2 is complete. 

3. Divided Differences and Derivatives. For simplicity, we write 

wj:= j4',, j = 1,...,21 - 1. 

Let S be the span of (po, ... ., 2- I-Then, by (2.1) and (2.2), we have 

f (q2X) = q2kf (x) all fE S. 

Recall that (xj)j E z is an i-multiple geometric mesh. Hence, Xj+21 = q2x1. 

We use the following abbreviation, 

Xj m:= [Xj, ... Xj+m] 

for the mth divided difference linear functional. According to the standard conven- 
tion, 

Xjm = [xj]Dm in case xj x= +m 

where D = d/dx is differentiation. By standard properties of divided differences, 

(3.1) Xj M+1 = (Xj+i,m - xjm)/(xj+l+m - xj) if X++M > xj, 

(3.2) Xj+?im =Xj,m if xj++? m= X1 

Now we restrict Xj m to the space S. Then one verifies that 

(3.3) X2l,m = q2k-2mx m0. 

Let Am be the cone generated by the Xj m, i.e., 

Am:= ajXj m; a > 0}. 

We claim that 

(3.4) Am C Am+1 
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Indeed, (3.1) and (3.2) tell us that 

Xj+,m- Xj,m E Am+i j= 0,...,21 -1. 

Therefore, 
21-1 

X21,m -O,m = E (Xj+l,m -j,m) E Am+i 
j=0 

From (3.3), we have X21m = q2kX2m0m, hence (q2k2m l)XO,m E A This 
shows that XO m E Am+1' and therefore 

j-i 

Aj 'm= + E (i+,m -Xim) E Am+1i 
i=O 

Thus (3.4) is proved. Set 

(3.5) _l: XO/ k- forO < i < 1. Ai+1:= X0,1q 

Then, as a consequence of (3.4), we have 

[I Ak for i= 0,...,21- 1. 

We have already proved the first part of the following theorem. 

THEOREM 3.1. There exists a nonnegative matrix 

c:= (C1j) 21-1 
i,j=o 

such that 
2/-1 

[i= E CijXj,. 
j=0 

Moreover, C is invertible, and C is bounded independently of q, 

IcijI < const k for all i, j. 

Proof. To prove the second part of this theorem, we let ti act on the function 

To E S. Then 

iTo= Cij(AJ,k90)- 

We observe that 

Xj,kTO = 1 for all j 

while 

[Li9)0 = AUi+1T(O = k (k - 1) ..(k k-I + 1) for i =0, ..., 1- 1. 

Therefore, 

Clj < constk. 

Since each cij is nonnegative, this implies that 

Cij < constk for all i, j. 
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We observe in the next section (see (4.7)) that (piqj) is invertible. This shows that 
(pi) is linearly independent over S, hence C is invertible. With this, the proof of 
Theorem 3.1 is complete. 

4. L-Boundedness of L2-Projections on Splines for a Multiple Geometric Mesh. 
We are now in a position to prove the main result of this paper. 

THEOREM 4.1. Let x = (xi)', be the mesh given by 

xii = x1i+1 = ... = x1i+1-1 = qi all i, O < q < xo, 

where / E N is the multiplicity of the mesh. Let 

A (f Mik,k )N 

Then 

sup IIA-1j < constk . 
O<q<oo 

Proof. When 1 = k, ?Sk becomes the space of all piecewise polynomials with 
breakpoints xi, i E Z, so this case is trivial. Thus we may assume I < k. 

We view A as a (21 x 2/)-block Toeplitz matrix. Set 

vp,j:=' E A(p, j +2ml),, p, j= 0,1,.., 21 -1, 
meZ 

and 

V := (V spj)21j-1 

Then V is just A(1). If b E R211 is a solution to the equation 
(4.1) Vb= -1', 
then, by Theorem 1.1, 

(4.2) |A-'1/ =1 | b 1. 
Here is our scheme for the proof of this theorem: As mentioned before, we need 

only to consider the case 1 < q < oo. First, we show that (4.1) has a solution for any 
q e (1, ox). Next, we investigate the uniform boundedness of b as q 00. Finally, 
we consider the behavior of b near q = 1. 

We need the following lemma. 

LEMMA 4.1. Iff E S satisfies 

(4.3) [X0 ... ., Xi+k] f = (-1)'/k! for i = O,.. ., 21 - 1, 
then (4.1) has a solution b satisfying 

jbil// < constk/ f (t) oo. 

(Recall that S is the span of O, *... *, P21-1) 

Proof. By Peano's Theorem, 

(4.4) | if (k) = k![xi,. *,Xi+k]f 

(see [2]). Since f (k) E ? kI it can be uniquely expanded in a B-spline series: 

f(k) = E bjNj k 
jeZ 
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with coefficient vector b:= (b )j G z. By (4.3) and (4.4), 

(4.5) Ab = -1'. 

We claim that 

bj+2, =bj forany jE Z. 

Since f E S, f(q2x) = q2kf (X), and therefore f (k)(q2x) f (k)(X). This fact gives 

Z b1?(q2x) = bJN. 

But Nj(q2x) = Nj>21(x), hence 

, bjNJ-21 = j bJNj or E bj+2lNj = E bjN,. 

This implies that 

bj+21 = all j, 

by the linear independence of { Nj; j E Z} (see [2]). Therefore, with (4.5), the vector 
b := (bJ i.0 solves (4.1). Moreover, IlblK,, < constkllf K (see [2]). The proof of 
Lemma 4.1 is complete. O 

Back to the proof of Theorem 4.1. We want to find f c S such that (4.3) holds. 
Since S is the span of O, I21-1 there exists a = (ao,..., a2-11) such that 
f= Yajqg. Hence, 

[ij = E(ju,qp )a. 

On the other hand, Theorem 3.1 tells us that 

'if = E ClJXj,kf. 

Therefore, 

([,q1)a1 = a E C,j(Xjf)kf 
i i 

Since C = (c,j) is an invertible matrix, (4.3) is equivalent to 

(4.6) E(pigpj)a, = E c,j(-I) Jk!. 
i I 

We have to take a closer look at the matrix ([t,T). By (3.5), we have 

9)p(i) (1) forO 0 ij < 1, 

= qj')(1) for0 << Oj < 21, 

J j g(l-1(1) for I < i < 2 1; 0 < j< I, 

| -+J(-') () for / < i, j < 21. 

Therefore, recalling the definition of 1' and I, we obtain 

(4.7) i)= [D ;] 

Since 1D and I are invertible, so is the matrix 
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(Here, I is the / x / identity matrix.) Moreover, since >(oo) and I(oo) are 
invertible, 

(4.8) limsup ||(ipw) 1 | <, constk. 
q- 00 

Since the matrix (tig)j) is invertible, we can find a so that (4.6) holds. Moreover, 
using Theorem 3.1, 

(4.9) a K0 < constk G(ij || 

For such a, the function f:= Ej aj1qj satisfies (4.3). Thus, by Lemma 4.1, we have 
already proved that (4.1) has a solution b for any q E (1, ox). 

Now we want to prove that 

(4.10) lim sup f (k) lloo < constk. 
q- 00 

By (4.8) and (4.9), 

lim sup II a Iloo, < constk. 
q- 00 

Hence (4.10) is true, once we show that 

(4.11) lim sup || }( k) || X < constk. 
q- 00 

Appealing to Theorem 2.1, we have 

Ti?k 00 H [I (Pv + 4n 2g / /]t for I < j <l-l. 
nc-Z -P=l 

Recall the abbreviation t = log q. Since t -- ox when q -- x0, we have, by the very 
definition of the Riemann integral, that 

k k-j 

lim E 17 (v2 + 4n27T2/t2)-1/2 It 

1 00 k-j 
= 2~" 11 H (v2 + z2)-/2dz < constk. 

00? - v =1 

This proves (4.11) for j = 1,..., I - 1. For I < j < 21 - 1, the proof is similar. The 
case j = 0 is trivial. With this, it follows from (4.2), (4.4), and (4.10) that 

(4.12) lim supII A-II < constk. 
q - 00 

Finally, we consider the behavior of b near q = 1. It is known (see [1]) that, for 
q = 1, A-1 is bounded. Therefore, V is invertible for q = 1. Since each entry of V is 
a continuous function of q, b is continuous in q near q = 1. This shows that 

lim lb b < constk. 
q-.1 

Invoking (4.2) once again, we obtain 

lim lA- O< constk. 
q-h 

The proof of Theorem 4.1 is now complete. 
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